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ABSTRACT 

 

This paper presents a novel algorithm for fast and effective 

vanishing point detection. Once line segments in an input 

image are detected by LSD algorithm, the proposed method 

filters out outlier line segments. The remaining line segments 

are then over-clustered, and each cluster is assigned to 5 

different types. According to the assigned type, each cluster 

is re-merged by applying different criteria, and the re-merged 

clusters generate hypotheses for vanishing points. Vanishing 

points are finally detected by utilizing these hypotheses and 

objective function minimization which reflects orthogonality 

of vanishing points. The proposed method is accurate because 

the proposed line over-clustering minimizes erroneous 

clusters, and type assignment is used for precise re-merging. 

Furthermore, the proposed method is fast since re-merging is 

conducted on a cluster level and the objective function is 

minimized non-iteratively. Experimental results show that the 

proposed method outperforms the state-of-the-art methods in 

terms of accuracy and computational cost. 

 

Index Terms— Computer vision, image reconstruction, 

calibration, projective geometry, clustering method, pose 

estimation 

 
1. INTRODUCTION 

 

The interest in accurate and fast vanishing point detection has 

been increased, as it can be used for camera calibration, pose 

estimation for navigation [15], and single view reconstruction 

[14]. Vanishing points can be obtained through the 

intersection of sets of parallel lines corresponding to three 

axes on the three-dimensional space projected into the image. 

In order to use sets of parallel lines for vanishing point 

detection, the axis of structure of the detected object in the 

image must be orthogonal on the three-dimensional space. 

Therefore, the key issue of detecting vanishing point is how 

to find sets of parallel lines which reflects the orthogonality 

and to cluster them. 

For clustering parallel lines, Tardif [10] suggested a line 

clustering method using J-linkage [8]. J-linkage generates Μ 

randomly selected minimal sample set of 2 edges and 

calculates each consensus set for all detected line segments. 

Then it compares each consensus set with Jaccard distance 

and clusters line segments until the consensus sets’ distances 

are all 1s. However, J-linkage has the disadvantages that the 

line clustering using J-linkage generates erroneous clusters by 

outlier lines, and detected vanishing points do not reflect 

orthogonality in three-dimensional space. To reflect the 

orthogonality, R4L (Random 4 Lines), a RANSAC-based 

method, was proposed in [2]. R4L utilizes the fact that the 

degree of freedom of the camera calibration matrix is reduced 

to one when the principal point is assumed to be located at the 

center of the image. R4L obtains three vanishing points using 

two intersection points of randomly selected 4 lines or one 

intersection point with a polar line. However, R4L sometimes 

do not estimate the optimal vanishing points on un-calibrated 

images because the principal point may not be located at the 

center of an image. Geometry image parsing, proposed by 

Barinova et al., [5] simultaneously detects line segments, 

clusters, and vanishing points by minimizing the suggested 

objective function. The suggested objective function reflects 

the orthogonality that when the principal point is the center 

of the image, the zenith line and horizon line are 

perpendicular to each other. However, this iterative method is 

computationally expensive. 

This paper proposes a new accurate and effective method 

for fast vanishing point detection. The proposed method 

consists of line filtering, line clustering, and objective 

function minimization. The line filtering method filters out 

the outlier line segments from the line segments detected by 

LSD algorithm [4] by segment length thresholding. The 

remaining line segments are over-clustered by J-linkage to 

reduce type2 [16] errors, and the generated clusters are 

assigned to a type according to the characteristic of each 

cluster. Clusters intersecting the same vanishing point are 

then re-merged by different criteria according to each 

cluster’s type. Each re-merged cluster generates hypotheses 

for vanishing points, and these are utilized for the proposed 

objective function minimization. The objective function 

finally detects vanishing points reflecting orthogonality. 

The proposed method shows good performance in terms 

of accuracy and speed for the following reasons. First, the 

proposed line filtering algorithm keeps line segments which 

reflects the structure of scene while reducing outliers, and this 

reduces the computational cost of the system. Second, by 

over-clustering and re-merging of line segments, the 

proposed method minimizes erroneous clusters which 

enables accurate vanishing point detection. Lastly, the 

proposed objective function is constructed by considering the 



orthogonality of the vanishing points, and it is minimized by 

non-iterative minimization which makes the system fast. 

 The organization of this paper is as follows. We explain 

the proposed algorithm and experimental result in Section 2 

and Section 3, respectively. And we conclude in Section 4. 

 

2. METHOD 

 

Fig. 1 illustrates the overall structure of the proposed method. 

Lines detected by the LSD are first filtered to minimize the 

outlier line, and then the remaining lines are over-clustered. 

After the over-clustering, each type is assigned to each cluster 

and re-merging is done according to the type. Finally, 

vanishing points are detected by minimizing the proposed 

objective function. 

 

2.1. Line filtering 

 

As shown in Fig. 2 (a), the histogram of the length of the line 

segments detected by LSD tends to follow f-distribution. 

Since long line segments represent the structure well, we 

regard the short line segments as outliers. We specify a 

threshold δ  to remove the line segments whose length is 

below the δ . We detect the inflection point as threshold as 

shown in Fig. 2 (b). In order to find the inflection point, we 

approximate the histogram by a Gaussian kernel, and perform 

20-th multinomial regression. Finally, the threshold value is 

set as the length of maximum value of quadratic differential. 

After the thresholding process, the sub-line segments 

separated from one line must be merged as one line, as 

proposed in [1]. This is because their intersection points are 

located at infinity which can cause wrong clustering. 

Assuming that the focal length is same with the row of the 

input image, we map segments to the Gaussian sphere [3, 7]. 

On the Gaussian sphere, a line segment is represented to a 

great circle, and the great circle is represented by a normal 

vector. Once an angle between any two normal vectors is less 

than θ (=1 ° ), the line segments representing the normal 

vectors are put into strongly connected component as nodes. 

For the line merging, each strongly connected line segments 

are merged to a line segment. This process is conducted for 

all line segments. The angle between two normal vectors is 

calculated by cos−1(𝐧1 ∙ 𝐧2/∥ 𝐧1 ∥∥ 𝐧2 ∥)  where  𝐧1, 𝐧2 

are any two normal vectors, and the typeset bold is 3-vectors. 
 

2.2. Over-clustering 
 

After line filtering, the lines are clustered to sets of parallel 

lines. For this purpose, Tardif [10] used J-linkage for line 

clustering. First, a consensus set is constructed as 1 if a line 

segment sk  is dist(sk, 𝐯i) < ε , or it is set as 0, where 

dist(sk, 𝐯i)  is the image-based consistency measure 

suggested in [10], 𝐯i  is the i-th hypothesis for vanishing 

points, and ε is a threshold. Then, lines are merged if Jaccard 

distance of their consensus sets is not 1. In this method, 

however, type2 errors [16] may be occurred in a cluster as  

 

shown in Fig. 3. In Fig. 3, even though the line segment sk 

should not be clustered with si and sj, sk is clustered with 

si and sj since dist(sk, 𝐯i) < ε. We solve this problem by 

using small ε enough, and lots of fragmented clusters are 

generated. 
 

2.3.  Type classification 

 

After over-clustering, many clusters are generated with 

various patterns. Clusters with different patterns cannot be 

merged in the same way because they have different 

characteristics. Therefore, as shown in Table 1, different 

merge methods are applied to each cluster according to its 

type. The type0 indicates a cluster in which all line segments 

meet at one vanishing point. The type1 indicates a cluster 

with one line segment, and the type2 indicates a cluster with 

two line segments. The type3 is an outlier cluster in which all 

line segments do not meet at one vanishing point or do not 

tend to be parallel lines. The type4 is a cluster in which all 

line segments are parallel. 

To classify the type of a cluster in practice, we compute 

a mean line segment computed for each cluster. The type1 and 

type2 are decided by the number of line segments in a cluster. 

The type0 is assigned to the cluster if an intersection point 𝐱 

of any two line segments in the cluster exist within ε with 

the mean line segment s̅ , i.e., dist(s̅, 𝐱) < ε . The type4 is 

assigned by analyzing the distribution of intersection points 

between each line segment and the mean line segment of a 

cluster. Since intersection points among parallel lines 

converge to infinity, when the standard deviation of the 

distribution is sufficiently large (i.e., standard deviation 

>3000), the type4 is assigned to the cluster. Type3 is assigned  

 
Figure 1. The system over-view of proposed method. 

 
(a)                     (b) 

Figure 2. Graphs for line filtering. (a) A histogram of length of 

detected lines. (b) An approximated histogram and detected 

threshold value. 
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Figure 3. The case of errors that occurred when using J-linkage. 

to a cluster if the cluster does not satisfy any conditions. 

After type classification, hypothesis for vanishing point 

of each cluster is calculated according to each type. The type0 

and type4 clusters use the intersection point between two 

arbitrary line segments as hypothesis for vanishing point. The 

type2 uses just the intersection point of two line segments as 

hypothesis vanishing point. Neither the type1 cluster nor 

type3 cluster generates hypothesis for vanishing point. 

 

2.4. Re-merging 

 

After type classification, clusters are re-merged by applying 

different criteria according to each type. Let {𝐯C} be the set 

of all hypotheses for vanishing points of all clusters, 𝐯p
𝐶  and 

𝐯q
𝐶   be hypotheses for vanishing points generated from p-th 

and q-th clusters, respectively. (i.e., 𝐯p
𝐶 , 𝐯q

𝐶 ∈ {𝐯C}, 0 < p <

q ≤K, where K is the number all cluster). And let s̅𝐶 be the 

mean line segment of a cluster. When p-th and q-th clusters 

either type0 or type 4, they can be merged if they satisfy the 

following equation (1). 

 

            
1

2
√dist2(s̅p

𝐶 , 𝐯q
𝐶) + dist2(s̅q

𝐶 , 𝐯p
𝐶) < 2 ∙ ε.         (1) 

 

In other cases, when p-th and q-th clusters are 

particularly type0 and type1, or type4 and type1, they are 

merged if dist(s̅q
𝐶 , 𝐯p

𝐶) < ε. When two clusters are merged, 

the type of the merged cluster follows the type of the first 

order cluster. The hypothesis of a type2 cluster is directly 

used for the proposed objective function minimization 

without re-merging process, since the two lines have an exact 

one intersection point. A type3 cluster is removed without re-

merging, since it is considered as an outlier. 

 

2.5. Objective function minimization 

 

The proposed objective function is defined as the following 

equation (2): 

  

           E({𝐯}|𝐳, {s}, {𝐯M}) = 𝑛𝑐 ∙ (1 −
L∩𝑙𝑖𝑛𝑒𝑠

L∪lines

)
2

+ 

                𝑛𝑗𝑠 ∙ 𝐽({𝐯M}, {s})2 + 𝑛ℎ𝑜𝑟 ∙ 𝜙(𝐮, 𝐳)2,         (2)                                  

 

where {s} is the set of all line segments filtered out, {𝐯M} is 

the set of all hypotheses for vanishing points of re-merged 

clusters. 𝐯p
M and 𝐯q

M are any two hypotheses in input {𝐯M}, 

L∪lines is the number of whole line segments in {s}, L∩𝑙𝑖𝑛𝑒𝑠 

is the number of segments intersecting 𝐯p
M  or 𝐯q

M  , u is a 

horizontal line, z is vanishing point for zenith, and the output 

{v} is the detected three vanishing points including z. 𝑛𝑐, 𝑛𝑗𝑠 

and 𝑛ℎ𝑜𝑟   are the weight coefficients of each term. The 

L∩𝑙𝑖𝑛𝑒𝑠  uses dist(s𝑛, 𝐯p||q
M ) < γ  to decide whether a line 

segment sn  intersects 𝐯p
M  or 𝐯q

M , ∀sn ∈ {s} , where the γ 

is a threshold. u is 𝐯p
M × 𝐯q

M, and z can be detected where a 

hypothesis for vanishing point the most lines intersected, 

having the slop of mean line larger than m (= 10°). 

The proposed objective function satisfies three 

assumptions which reflects orthogonality. First, lines that 

reflect the structures surely intersect a vanishing point. In 

other words, a hypothesis the most lines intersected is 

possible to be a vanishing point. The first term of the 

function, L∩𝑙𝑖𝑛𝑒𝑠/L∪lines , means a ratio how many lines 

intersect 𝐯p
M or 𝐯q

M among whole lines. By subtracting the 

ratio from 1, if the L∩𝑙𝑖𝑛𝑒𝑠 increases, then the return value be 

small. The second assumption is, similarly to vanishing point 

detection policy in [2], that the line segments which reflect 

the structure does not pass through more than two vanishing 

points. Thus, the second term 𝐽({𝐯M}, {s})  represents the 

Jaccard similarity between the consensus sets of 𝐯p
M and 𝐯q

M 

for ∀sn ∈ {s}. The smaller the number of lines crossing the 

two hypotheses is, the closer the similarity is to 0. Thirdly, as 

suggested in [5], the horizontal line is perpendicular to the 

zenith line assuming that the principal point is the center of 

the image. Thus, the third term 𝜙(𝐮, 𝐳) is the tangent value 

between u and the perpendicular line to the zenith line. The 

zenith line is a line passing through the z and the center of the 

image. Tangent operation returns an exponentially increased 

value as the angle of two lines increases. 

Therefore, given z, {s}, and {𝐯M }, 𝐯p
M  and 𝐯q

M  are 

sequentially put into objective function in the order 0 < p <
q ≤K, K is the number of {𝐯M}. The final vanishing points 
{𝐯∗} are non-iteratively detected as: 

 

                    {𝐯∗} = argmin
𝐯p

M,𝐯q
M

(E({𝐯}|𝐳, {s}, {𝐯M})).        (3) 

 

3. EXPERIMENTAL RESULTS 

 

This algorithm is implemented by Python on Window 10 with 

intel Core i-7 CPU. For the experiment, we used 102 images 

York Urban Database satisfying the Manhattan world 

assumption and 103 images Eurasian Cities Database which 

Table 1. The variety of types 

Type Shape Type Shape 

Type 0  Type 1  

Type 2  Type 3 
 

Type 4 
 

 

 

 

dist(sk, 𝐯i)<ε 

line segment s𝑘 

a hypothesis
 vanishing point 𝐯i

 
𝐞തk 

𝐞k
1 

si sj 



is the non-Manhattan world. We used R4L, J-linkage, and T-

linkage [11] known as all win cases of J-linkage as control 

group, and they are implemented on python. All methods use 

line segments detected by LSD with line filtering. For line 

filtering, the threshold value δ is determined between 20 and 

30 automatically, and the number of line segments is reduced 

from 1000 to less than 500 ones maintaining good structure. 

The proposed method used ρ = 10°, Μ =100,ε = 0.01  for 

line clustering and γ = 0.5,   𝑛𝑐 = 0.2,   𝑛𝑗𝑠 = 0.3,  and 

 𝑛ℎ𝑜𝑟 = 0.5  for objective function minimization. The 

parameters of T-linkage and J-linkage used Μ = 500 and, as 

suggested in [11], T-linkage used τ = 0.65, J-linkage, ε =

∫ 𝑒−
𝑥

5τ𝑑𝑥
5τ

0
(≈ 2). R4L used K = 500 iteration and ε = 0.5 as 

presented in [2]. We used horizon estimation error and zenith 

vanishing point error with cumulative histogram for 

experimental measurements. Horizon estimation error was 

proposed in [5], and zenith vanishing point error was 

measured by the angle between detected zenith vanishing 

point and ground truth mapped to the Gaussian sphere. 

 Since all methods are affected by random initial values, 

we tested dataset 10 times and the experimental results are as 

follows. The Fig. 4 and Fig. 5 indicate that the proposed 

method has the best performance in both Eurasian Cities 

Database and York Urban Database. Since the proposed 

method finds the vanishing points with the principal point 

closing to the center of the image instead of fixed center, the 

detected vanishing points are precise in un-calibrated image. 

Furthermore, the proposed method was the fastest at min. 

0.47 sec and mean 2.46 sec. Since the experiment is done in 

python, we expect the algorithm to be 0.01 to 0.05 sec in 

MATLAB code and 0.002 to 0.006 sec in C ++ [13]. The 

examples of results of the proposed method are as shown in 

Fig. 7, and the comparison of each method’s performance is 

shown in Fig. 8 where the detected horizontal line is colored 

by cyan, the ground truth line is yellow, and the clustered 

lines are colored by red, blue and green. 

 

4. CONCLUSION 

 

In this paper, we developed the vanishing point detector with 

superior performance by over-clustering, type assignment, re-

merging and objective function minimization. The proposed 

method shows that good performance using those processes 

constructed considering precise and fast approaches 

reflecting orthogonality for the vanishing points, so it is faster 

and more accurate than other methods. The proposed method 

can be used for single view reconstruction or real-time 

navigation system. For the future, we will continue to develop 

this algorithm with an optimal solution for more accurate 

detection using Expectation Maximization method used in [6, 

9] and Likelihood maximization used in [2, 12] while 

considering the speed side. 

 

 

 
(a)                   (b) 

Figure 4. Cumulative histograms of horizon estimation error. 

(a) Eurasian Cities Database. (b) York Urban Database. 

 

 
(a)                   (b) 

Figure 5. Cumulative histograms of zenith vanishing point error. 

(a) Eurasian Cities Database. (b) York Urban Database. 

 
Figure 6. comparison of computation time(sec.) 

  

  
Figure 7. Examples of results of the proposed method. 

  

  
Figure 8. Comparisons of line clustering and horizontal line 

detection. Top-left is J-linkage, top-right is T-linkage, bottom-

left is R4L, and bottom-right is the proposed method. 
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